A note on power domination in grid graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on power domination in grid graphs

The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well known vertex covering and dominating set problems in graphs (see [T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Power domination in graphs applied to electrical power networks, SIAM J. Discrete Math. 15(4) (2002) 519–529]). A set S of v...

متن کامل

A note on Power Domination Problem in Diameter Two Graphs

The power domination problem aims to find the minimum number of phase measurement units (PMUs) required in order to observe the entire electric power system. Zhao and Kang [6] remarked that there is no known nonplanar graph of diameter two with a power domination number that is arbitrarily large. In this note, we show that the power domination number of such graphs can be arbitrarily large.

متن کامل

A note on domination in bipartite graphs

DOMINATING SET remains NP -complete even when instances are restricted to bipartite graphs, however, in this case VERTEX COVER is solvable in polynomial time. Consequences to VECTOR DOMINATING SET as a generalization of both are discussed.

متن کامل

A Note on Total Domination Critical Graphs

The total domination number of G denoted by γt(G) is the minimum cardinality of a total dominating set of G. A graph G is total domination vertex critical or just γt-critical, if for any vertex v of G that is not adjacent to a vertex of degree one, γt(G − v) < γt(G). If G is γt-critical and γt(G) = k, then G is k-γt-critical. Haynes et al [The diameter of total domination vertex critical graphs...

متن کامل

A note on domination and independence-domination numbers of graphs∗

Vizing’s conjecture is true for graphs G satisfying γ(G) = γ(G), where γ(G) is the domination number of a graph G and γ(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I . The equality γ(G) = γ(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2006

ISSN: 0166-218X

DOI: 10.1016/j.dam.2005.08.006